(10x^2/2+5x)-20=0

Simple and best practice solution for (10x^2/2+5x)-20=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x^2/2+5x)-20=0 equation:



(10x^2/2+5x)-20=0
Domain of the equation: 2+5x)!=0
We move all terms containing x to the left, all other terms to the right
5x)!=-2
x!=-2/1
x!=-2
x∈R
We get rid of parentheses
10x^2/2+5x-20=0
We multiply all the terms by the denominator
10x^2+5x*2-20*2=0
We add all the numbers together, and all the variables
10x^2+5x*2-40=0
Wy multiply elements
10x^2+10x-40=0
a = 10; b = 10; c = -40;
Δ = b2-4ac
Δ = 102-4·10·(-40)
Δ = 1700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1700}=\sqrt{100*17}=\sqrt{100}*\sqrt{17}=10\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{17}}{2*10}=\frac{-10-10\sqrt{17}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{17}}{2*10}=\frac{-10+10\sqrt{17}}{20} $

See similar equations:

| x²-x-12=0 | | x^2-18x+58=0 | | -23=-2a-10-10+a | | -5(2x+2)+2x-4=4 | | 3p–2p=3 | | 14v-9v=20 | | x+23.75=37.00 | | 16+0.5x=8 | | 1/2(6x+4)=1/5(25x+20) | | -3(-7x-1)-3x=1 | | 19a-18a=15 | | 8a−5=3a | | 2/5b-1/4=3/8 | | 2x+8=-5x-13 | | 48-3x-2x=x | | 1/3x-3/8=-1/2 | | 2x+8=-5-13 | | x-15.75=20.40 | | 2c–6=2 | | 4x5x=18 | | 3x+20+4x=2x+60 | | 28-x+6=4x+24 | | 25^2x+1=64 | | x2+8x-65=0 | | 13-4x=45 | | -5/8x=3/4 | | p+2.1=9.0 | | x2+10x=5 | | 9z-9+9z+16=62 | | 3(2+6x)=-5 | | y=4+15 | | 3(4x+2)=20x+(-9x)+2 |

Equations solver categories